Download PDF

The tale of avoiding a
time-based DDOS attack in Node.js

Paolo Insogna
Node.js TSC, Principal Engineer @ Platformatic

Sometimes, your
worst enemy is
slowness!

°“Berna oy |
SVIZZERA
‘Losanna ™/~ e LT L H_/’__%ih“'
| ' evra. . 4% v o 3
I I I : it : . SLOVENIA
e o a o o . 3‘ ! ks LD /'r A » Zagabria L\'“_\//”
’ \ NTrieste 2 .:
A oMilano . Verona . Venezia : :
= {.\; o Fiume CROAZIA
Torino \M . e
o W . l'-'.t-'||IL
{ l_\‘Vk/‘;\\/_\—i\ .pnla -
= N .Modena "Banja Luka
w‘\rﬂ Genova cealogna ‘Z‘\x Tuzla®
(; a £ Y AN BOSNIA-
: L Z . Rimini Zara® ERZEGOVINA
- Sarajevo
! Firenze ./ "/ 5
e . Pisa o &5 e :
ence Nizza Mar 7 : ;

“Livorno

Ligure i A 2 Split~ Mostar
Er/ v \ i1
"*ﬁ F
(y
L > I =i \ MC

;Jlj !.,IA l'ﬁ',& Fj:'\] ﬁ*’"ﬂ ¥ Dula\mw

\jfﬁxo .Foggia

Node.js Technical Steering Committee Member 2 Barl
. -, Napoli
Platformatic Principal Engineer gl . gy »\ﬁ\
"h.r; \5 . Taranto
Sard : ‘nﬂ‘j /—-..
o o O
o Cagliari
%
_Palermo “Messing Mar
lonic
Sicilia ; Catania
paoloinsogna.dev ShogunPanda p_insogna pinsogna o ke Q2 RIste
o Annabs e 5 Tunisi

Constanting

What do we use
everyday?

Web applications play a very important part
of our lives.

They must not go down!

Denial of Service Attack

Denial of Service Attack (DoS)
A network resource is maliciously made unavailable to its intended users.

> 1 4
q Distributed Denial of Service (DDoS)

The incoming flooding traffic originates from many different sources.

In DDoS the attacker usually uses a lot of resources
Is that still true?

The Slowloris attack

e
—
{

Whatis it?
A DDoS attack which
uses minimal bandwidth.

When it was created?

Robert “RSnake” Hansen
carved it on June 2009.

It's not just HTTP!

This attack can be abstracted
to similar protocols.

Re_ﬁular Flow

-
-
o S
— 'H..._Il
o .
L H‘"‘--\. ""..__
= .
. i,
- .
o,

.....

‘ \ fir) — [= o
__l| << oo Tt .0
o™ TR T TN == [== o

Clients
i -‘j;_-,_ -:_:r.
Resuest Resporse
Slowlors Attock
Clients
Sy g Server
gt o - ___-\"
l """""" = [Imnmn == o
--------------- = T —K=
[T -~ - - - - = g — o |
=7
A T
P gy
o T T W e i e g 3

Incomplete Request

Normal HTTP server

activity

Each socket or

the server consumes some

amount of
resources.

RAM and other system

Connected Secket

AVARITALTEY

|
T
i

AALERCARIATA

Clients

Normal HTTP server
activity

Clients usually disconnect after receiving
the response.

Connected Socket

|

7

L = o

R ——

i == <

A\

Normal HTTP server
activity

The amount of resources consumed by the
server are relatively stable.

Connected Socket éﬁqu est

W ——= o
guppinn ——= ©
My == o\

Clients

Response

Retaining sockets is expensive

@ The operating system manages low-level operations

Each sockets consumes several kilobytes of RAM.

ﬁ Each socket is backed by a file descriptor

Each process has a limited number of descriptor available, managed via ulimit.

AA\

The application manages high-level operations
The application representation of the socket adds extra memory overhead.

The Slowloris attack

-------- 5

Connected Socket Iﬁﬂﬂmp‘ﬂ_‘tg Request

Each client never finishes a request and
stays connected for the longest time

Server

possible. .

W == O

il — o

| & lie,n‘t‘s

The Slowloris attack

As more clients connect, server resources
usage constantly increases over time.

Connected Socket Ine.ump[e.'te. Request
Server
L —= a|
I ——= Q
Myl =—= o

_— O S e T S S .

The Slowloris attack

———————— >

Connegcted Socket In:nmp[e;'be. Request

At some point server has no more free
resources and cannot accept any new
client.

Server

iy == O]
1

I —— Q!

f—

The service is interrupted! [T == 0

g

I -

L3

How do we stop it?

= ;—-—_-.—_J.ﬂ'\-—

= "

=
-

1

o~ = -ﬂ"i~v

Use a reverse proxy

Never put Node.js as the direct point of contact to the clients.
Servers like Nginx have better protection from DDoS attacks.

Mitigation strategies

Distinguish between requests which are legit and requests that belong to the attack is very hard.
None of the strategies below is 100% accurate.

Limit connections per IP Enforce speed or time constraints

As the attack is distributed, the attacker can It's hard to establish a connection which will
easily switch to another IP. not cut out slow leqit clients.

W
N

h

o

da
e1: a
..js]')'0
' u
t
@

@®

http.Server.headersTimeout

Node.js never parses or consume request bodies.

’(. Partial fix as the body is not considered

=S Body handling is delegated
“ Applications are responsible for body timeouts.

Node.js 10.14.0, November 28th, 2018

Node.js has been completely unprotected for 10 years.

ahudn
_

Trust the frameworks

Disable http.Server.timeout by default
\ The default value has been changed to nothing.

The philosophy Dbehind this
choice was to support serverless

shb=la Node.js 13.0.0, October 22th, 2019
- From now on, attacker can delay transfer indefinitely.

environments which needed long
running connections.

http.Server.requestTimeout

Complete fix
The client has now limited time to finish.

Available on all active Node.js lines
Added to Node.js 14.11.0, released on September 15th, 2020.

Disabled by default

Adding a clock for each new request is an expensive operation.

Are we safe now?

The countermeasures were loose

-0—: Custom configuration was needed to protect adequately
«O=== The attacker could still delay data transfer forever without being rejected.

Performance was prioritized
Whenever a timeout has gone off was checked only after new data was received.

How to protect Node.js 16 and below

X

Make sure sockets cannot be idle
http.Server.timeout must be greater than 0 to detect malicious idle sockets.

Limit the total time for each request
http.Server.requestTimeout must be greater than 0.

Have a lower timeout for the headers
http.Server.headersTimeout should also be set to detect a malicious client earlier.

How to protect Node.js 16 and below

import { } from 'node:http’

const server = createServer()

server. = 120000

server. 300000

server.

Node.js 18.0.0 is finally safe by default

The latest major version of Node.js has finally solved all the issues described.
Changing timeout handling has improved performance by 2%.

\

Request are checked periodically Have safer defaults
The HTTP server regularly checks for The timeouts for headers and request
requests which might have timed out. are finally enabled by default.
See the new option: The default Node.js configuration

connectionsCheckingInterval now protects against SlowLoris.

We made it!

Take home lessons

What can we learn from this long journey?

Security, always

Always think about security
Implication when implementing
new features or fixing bugs.

Sacrifice Performance

Putting performance aside can
drive to correct, innovative and
eventually performant solutions.

\

Validate regularly

During regular activities, always
check the existing code for hidden
flaws or vulnerabilites.

One last thing™

“Never assume the obvious is true.”

Thank you!

Wil _*‘, Y
. & - . \ /
' =" A -

Paolo Insogna @p_insogna
(p > Platformatic
Node.js TSC, Principal Engineer paolo.insogna@platformatic.dev e

