Download PDF

The last 5 years of streams in Node.js

Paolo Insogna
Node.js TSC, Principal Engineer @ Platformatic

Pantarei!

°“Berna oy |
SVIZZERA
‘Losanna ™/~ e LT L H_/’__%ih“'
| ' evra. . 4% v o 3
I I I : it : . SLOVENIA
e o a o o . 3‘ ! ks LD /'r A » Zagabria L\'“_\//”
’ \ NTrieste 2 .:
A oMilano . Verona . Venezia : :
= {.\; o Fiume CROAZIA
Torino \M . e
o W . l'-'.t-'||IL
{ l_\‘Vk/‘;\\/_\—i\ .pnla -
= N .Modena "Banja Luka
w‘\rﬂ Genova cealogna ‘Z‘\x Tuzla®
(; a £ Y AN BOSNIA-
: L Z . Rimini Zara® ERZEGOVINA
- Sarajevo
! Firenze ./ "/ 5
e . Pisa o &5 e :
ence Nizza Mar 7 : ;

“Livorno

Ligure i A 2 Split~ Mostar
Er/ v \ i1
"*ﬁ F
(y
L > I =i \ MC

;Jlj !.,IA l'ﬁ',& Fj:'\] ﬁ*’"ﬂ ¥ Dula\mw

\jfﬁxo .Foggia

Node.js Technical Steering Committee Member 2 Barl
. -, Napoli
Platformatic Principal Engineer gl . gy »\ﬁ\
"h.r; \5 . Taranto
Sard : ‘nﬂ‘j /—-..
o o O
o Cagliari
%
_Palermo “Messing Mar
lonic
Sicilia ; Catania
paoloinsogna.dev ShogunPanda p_insogna pinsogna o ke Q2 RIste
o Annabs e 5 Tunisi

Constanting

What are streams
anyway?

Pretty simple, isn't it?

A stream is an abstract interface for working
with streaming data in Node.js.”

Node.js official documentation

They are powerful

Fully asynchronous
Since they are based on events and async |/O, the event loop is not blocked.

Minimum memory footprint
Only single chunks of data are processed instead of loading the full data in memory.

Expandable
There are tons of away to implement new stream.

Canlusethemin
the browser?

Meet readable-stream

It Is @ NPM package which mirrors the Node.|s stream module and additionally adapts it to use In
the browsers and/or bundlers.

IIIIIIIIIIIIIIIIII
lllllllllllllllllllllllllll
llllllllllllllll

https://www.npmjs.com/package/readable-stream

How is the package built?

1 Download the code

Node.js source code is downloaded.

Copy the stream module
The entire stream module is copied into the destination directory.

All references to other node modules are removed.

Add custom modules
Custom and platform-agnostic version of the needed modules are re-inserted.

3 Manipulate the source

Project status

slula | atest seriesis 4.x.x.

It was initally released on June 14th, 2022,
three years after the last one.

Update of the stream module

It mirrors the module in Node.js 18.x.x which
Is the current LTS version.

Long overdue

Series 3.X.x shipped the module present in
Node.js 10.x.x (2018).

Sorry for the long wait!

What has changed
In streams
since then?

Broader status handling

An entire new set of properties for readable stream
readableAborted, readableDidRead, readableEncoding and readableObjectMode

v == Tracking the end event
o =m» Stream.Readable.readableEnded and stream.Writable.writableEnded

Tracking flushing status
stream.Writable.writableFinished

More predictable event flow

Be reasonable

. The autoDestroy option is now enabled by default: after a end or finish event the stream
will call destroy automatically (and only once).

Less events chain
Q. The end or finish events are not emitted if a error event was emitted.
Emitting a close event before the end event is now considered an error.

Do not be eager
stream.pipeline will wait for unfinished streams.

... S0 boring ...

Let's see the exciting parts!

Stream from iterables

stream.Readable.from is a new function that allow to create a stream from any object
implementing the (async) iterator protocol.

import from 'readable-stream’

async function* generate() {
yield 'hello’
yield 'streams'

}

const readable = Readable.from(generate())

Duplex stream from anything

stream.Duplex.from can now be used to create a duplex stream from something else.

Let's play a little game!

import 'readable-stream’

Duplex.from(|

new Promise(() => setTimeout(resolve('1
new Promise(() => setTimeout(resolve('2'),
new Promise(() => setTimeout(resolve('3'

1);

Promises API

A new module exposes was added to
Node.|s: stream/promises.

import { , } from 'node:fs’
import { } from 'node:zlib’
import { } from 'readable-stream’

It exposes a promises based API version of const { finished, pipeline } = Stream.
finished and pipeline. await pipeline(

createReadStream('archive.tar'),
createGzip(),
createWriteStream('archive.tar.gz')

)

const rs = createReadStream('archive.tar')
await finished(rs.resume())

Functional style helpers

You can manipulate readable streams using common functional style helpers.
Manipulating
filter, map, reduce, forEach, flatMap
Searching
some, find, every

Fetching
toArray

With great power
comes great
responsibility™

The toArray method reads the entire
stream into memory, which is exactly what
streams are meant to avoid.

Promise me you will only use it when
absolutely necessary!

What is used under the hood?

Build toolchain

Compared to the previous one it still uses regular expression but it is much smaller thanks to a
more modern Javascript environment.

T

JS e

ESM Babel Prettier

Testing technologies

A complex testing environment to match most desired scenarios across Node.Js version,
browsers and bundlers.

A2
2 % o
 WAY
. AR |
Z | J
TAP Tape Playwright
Used to test in the Node.js Along with custom runner and It used to easily test

environment. parser, it is used to test browsers. In all major browsers.

We test 100
configurations in
the CI'

... that's all folks!™

There are obviously more changes, but these were the most juicy.

Remember to thank these guys!

Obviously | haven't done all this by myself.

Matteo Collina Robert Nagy Benjamin Gruenbaum
https://github.com/mcollina https://github.com/ronag https://github.com/benjamingr

One last thing™

“The man who is swimming against
the stream knows the strength of it.”

Thank you!

Wil _*‘, Y
. & - . \ /
' =" A -

Paolo Insogna @p_insogna
(p > Platformatic
Node.js TSC, Principal Engineer paolo.insogna@platformatic.dev e

