[@J > Platformatic

338 Byatege® 3. Hale 4"
E ;i;*._._ . ﬁ:. 1 .*,.i:

Download PDF

How to create a PostgreSQL
based webhook system

Paolo Insogna
Node.js TSC, Principal Engineer

Don't shoot a fly
th a cannon

=

°“Berna oy |
SVIZZERA
‘Losanna ™/~ e LT L H_/’__%ih“'
| ' evra. . 4% v o 3
I I I : it : . SLOVENIA
e o a o o . 3‘ ! ks LD /'r A » Zagabria L\'“_\//”
’ \ NTrieste 2 .:
A oMilano . Verona . Venezia : :
= {.\; o Fiume CROAZIA
Torino \M . e
o W . l'-'.t-'||IL
{ l_\‘Vk/‘;\\/_\—i\ .pnla -
= N .Modena "Banja Luka
w‘\rﬂ Genova cealogna ‘Z‘\x Tuzla®
(; a £ Y AN BOSNIA-
: L Z . Rimini Zara® ERZEGOVINA
- Sarajevo
! Firenze ./ "/ 5
e . Pisa o &5 e :
ence Nizza Mar 7 : ;

“Livorno

Ligure i A 2 Split~ Mostar
Er/ = \ X
'A F
(y
L 7 /f o N\ MQ

r)'j EA melf& Fjl:'\] Ts & ¥ Dula\mw

\j;“mo .Foggia

Node.js Technical Steering Committee Member 2 Barl
. -, Napoli
Platformatic Principal Engineer e g e, salrnby K
p g >, \5 r\L - Taranto
sard 3 fﬂ,:, /_,
- & A
o Cagliari
b
_Palermo “Messing Mar
| fonic
Sicilia , Catania (Y J 2
paoloinsogna.dev ShogunPanda p_insogna pinsogna _oBizerte Agrigento
o Annabs e 5 Tunisi

Constanting

Distributed data in a distributed world

[\
11

A\ /4

We don't live a in simple world
The complexity of data cannot be handled by a single system.

Divide et impera
This represents the only possible path to have a scalable and reliable architecture.

d With new powers come hew challenges

How many point of failure would you like to have?

Time matters, as usual!

7

R/

Distribution implies synchronization

When the data is distributed, keeping a global
consistent state is hard.

>

Do it right or you will fail miserably

Not all customers want to deal with things like
overbooking, so be careful with your data.

Batch updates via FTP or similar

= ¥

The old good way Not realtime and fragile
Still popular, especially in banks. Data is processed with massive delays. A
Your money depends on this, unfortunately. failure might impact the entire batch.

Polling (pull)

Relatively simple
|s responsibility of dependent system to periodically checks for updates.

Almost realtime
The system receives the list of updates in much shorter time.

E Network intensive
A lot of uncessary requests are made, especially when updates are not frequent.

Events based (push)

Realtime
As soon as an update is available, all dependent systems are notified.

Network optimized
e Not a single unnecessary byte is sent over the wire.

Delivery state is complex
The system must maintain the list of subscribers and handle delivery failures.

Which one
shall we choose?

Say helloto

What are we talking about?

“Webhooks are user-defined HTTP callbacks.
They are usually triggered by some event, such
as [...] a comment being posted to a blog and

many more use cases.”
Wikipedia

Let's implement
areal one!

General architeture

1 ™ Model as a queue
2 a== A webhook system is modeled as a queue of events.

Single target
Each queue is associated to a single URL.

Simple data structure
Few tables in a (No)SQL database are more than enough.

R

(=

Yes, but which kind of queue?

Eventual
The queue might not deliver all messages.

At least once
The queue guarantees that all messages are delivered, but there might be repetitions.

Exactly once
Each message is guaranteed to be delivered only once.

Yes, but which kind of queue?

1 Exactly once

Each message is guaranteed to be delivered only once.

What about
failures?

Dead letter queue (DLQ)

Limited retries
A messages is retried a limited number of times.

Messages that cannot be delivered are moved to a separate queue.

’(Separate queue for troubleshooting

Manual intervention
A human operator is required to evaluate the DLQ.

Cron jobs

:::
k1
*

Messages can be repeated
A system can mark a message as "to be repeated regularly”.

Easy extension of the queue system
Once a message Is delivered, it Is engueued again.

Standard syntax
The repetition interval syntax is really flexible.

What about race
conditions?

Being equal is hard

Atomicity is hard
On distributed system, atomic access is complex and easily leads to an inconsistent state.

Concurrency is even harder
If implemented wrong, multiple peers will easily ending up operating on the same resource.

The queue model might be violated
Without coordination, policies like exactly-one might not be guaranteed.

Leader based queue system

e e All concur to elect a leader
All instance of the queue system must choose a leader.

@ Onlytheleader is active

@ No contention for resources and massive lock access attempts.

w Automatic failover
‘m When the leader resigns or fails, a new leader is automatically selected.

A simple selection implementation

Lock based

A distributed lock is used to select the leader.

Exclusivity is the key
Only one instance can hold the lock at any given time.

Bully-like algorithm

We are going replace the original concept of "higher ID" with locks.

How do you easily
get such alock
iImplementation?

PostgreSQL

The leader election prcoess

1 Lock access

All the peers, potentially at the same time, will try to get an exclusive acces to the lock.

Become the leader
Only one peer receives the lock and becomes the leader, other will be denied.

The leader will start the operation, potentially delegating to other peers.

Leader resigns or fall
When the leader voluntarily resigns or fails, the other peers start a new election.

3 Leader coordinates

Stop talking please.
Show me the !

Technical stack

nede

Node.|s

=

Fastify

W

PostgreSQL

Database schema (1/2)

CREATE TABLE IF NOT EXISTS queues (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
url VARCHAR(2648) NOT NULL,
method VARCHAR(10) NOT NULL,

headers JSON DEFAULT NULL,

max_retries INTEGER NOT NULL DEFAULT 35,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
UNIQUE(name, url, method, max_retries)

Database schema (2/2)

CREATE TABLE pending_messages (
id SERIAL PRIMARY KEY,
queue_id INTEGER NOT NULL REFERENCES queues(id),
headers JSON,
payload BYTEA DEFAULT NULL,
retries INTEGER DEFAULT @,
schedule VARCHAR(188) DEFAULT NULL,
execute_at TIMESTAMPTZ DEFAULT NOW(),
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW()
)

CREATE TABLE completed_messages (
id INTEGER,
queue_id INTEGER NOT NULL REFERENCES queues(id),
headers JSON,
payload BYTEA DEFAULT NULL,
retries INTEGER DEFAULT 6,
response TEXT,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW()
);

CREATE TABLE failed_messages (
id INTEGER,
queue_id INTEGER NOT NULL REFERENCES queues(id),
headers JSON,
payload BYTEA DEFAULT NULL,
retries INTEGER DEFAULT @,
error TEXT,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW()

(L

Services

6
56

Processor
The queue system that deliver messages.

API

It Is used to add messages to the queue.

Composer
A @platformatic/composer service which orchestrates all other services.

Target
A sample Fastify application that receives the messages. It implements random failures.

Processor: Main

async function main () {
const db = createConnectionPool({ : 'bigint' })

globalThis.platformatic.events.on('stop', async () => {
logger.info('Received stop event. Stopping processing jobs...')
abortController.abort()

})

const abortController = new AbortController()

while ('abortController.signal.)
await runAslLeader(db, () => {
logger.info('Successfully elected as leader. Starting processing jobs...')

return processJobs(db, abortController.)

})

await scheduler.wait(1060)
}

await db.dispose()

Processor: Leader election and main loop

async function runAslLeader (db,) {
return db.task(async => {
const [result] = await leaderConnection.query(
sql "SELECT pg_try_advisory_lock(0®) as lock®

)

if (!'result.) {
return

}

try {
await task()

} finally {
await leaderConnection.query(

sql "SELECT pg_advisory_unlock(©®) as unlock"

)
}

})
}

And now, let's
deliver some
messages!

Processor: Query to select the next message

export function getNextPendingMessageQuery () {

return sql’
SELECT
messages.id, messages.queue_id as queue, messages.headers as message_headers,
messages.payload, messages.retries, messages.schedule,

queues.url, queues.method, queues.headers as queue_headers, queues.max_retries
FROM

pending_messages as messages

INNER JOIN
queues ON messages.queue_id = queues.id
WHERE
execute_at < NOW()
ORDER BY
messages.execute_at ASC
LIMIT 1

Processor: Select and deliver a message

async function processJobs (db,
while (!abortSignal.) A
let
try {
const pending = await db.query(getNextPendingMessageQuery())
= [0]

if () {
await db.query(sql UPDATE pending_messages SET execute_at = NULL WHERE id = ${

}
} catch (e) {

return

if (!) {
await scheduler.wait(1690)
continue

}

await invokeHook(db,

(o

Processor: Deliver a message

async function invokeHook (db,) {
try {
const response = await fetch(message.
. message. ,
{

'content-type': 'application/octet-stream’,
. . .message. ,
. . .message.

b

. message.

})

const responsePayload = {
response. ,
. Object.fromEntries(response.headers.entries()),
. await response.text()

}

if (response.ok) {
await handleMessageSuccess(db,
} else {
await handleMessageFailure(
}
catch (e) {
await handleMessageFailure(db,

Why all those
delays?

Notifications based scheduling

I .. Polling is not very efficient

But it was the easiest to implement. Forgive my laziness.

f Pushing based scheduling is way better

The processor can listen for notifications and act accordingly.

PostgreSQL pub/sub works flawlessly
Take a look at the LISTEN and NOTIFY commands. But don't forget about cron jobs.

Processor: Retry and error handling

function markMessageAsCompletedQuery (,) {

return sql’
INSERT INTO completed_messages (id, queue_id, headers, payload, retries, response)
, null, 2)})

VALUES (S{message.id}, S{message. }, S{message. }, NULL, S{message. }, S{JSON.stringify(

}

function deletePendingMessageQuery (id) {
return sql DELETE FROM pending_messages WHERE id = ${id}’

}

async function handleMessageFailure (db, ,) {
if (message. < message.) {
const timestamp = new Date(Date.now() + exponentialBackoff(message.
try {
await db.query(sql UPDATE pending_messages

} catch (e) {

+ 1)).toIS0String()

SET retries = retries + 1, execute_at = ${ } WHERE id = ${message.id}")

}
} else {

try {
await db.tx(async => {
await db.query(markMessageAsFailedQuery(
await db.query(deletePendingMessageQuery(id))

})
} catch (e) {

}
}
}

Processor: Reschedule a successful cron job

function markMessageAsCompletedQuery (,) {
const serializedResponse = JSON.stringify(, null, 2)

return sql°
INSERT INTO completed_messages (id, queue_id, headers, payload, retries, response)
VALUES (S{message.id}, ${message. }, S{message. }, NULL, $S{message.

h

function rescheduleMessageQuery () o
return sql’
UPDATE pending_messages
SET retries=0, execute_at = S{parser.parseExpression(message.).next()} WHERE id=S${message.id}

}

async function handleMessageSuccess (db,
try {
await db.tx(async => {
await db.query(markMessageAsCompletedQuery/(;))
await db.query(message. ? rescheduleMessageQuery() ? deletePendingMessageQuery(message.id))
})
} catch (e) {

}
b

(L

Remember,
successful message
be retried!

APIl: Message creation endpoint

server.route({
'POST ',
' /messages’,
async handler () {
let { . .

=== 'string') {

}

if (!Buffer.isBuffer()) {
== 'string' ? JSON.stringify() : payload.toString()

= typeof !

}

const [row] = await db.query(sql’
INSERT INTO pending_messages (queue_id, headers, payload, schedule)
VALUES (S b, oS4 2?7 null}, ${ b, $4 H
RETURNING id;

")

reply.code(2081)
return

by
})

(L

Mission completed!

Check it out!

All the code is on GitHub!

lllll
e o8
.............
IIIIIIIIIIIIIIIIII
lllllllllllllllllll
IIIIIIIII

https://github.com/ShogunPanda/postgresql-webhooks

One last thing™

“Progress is man's ability
to complicate simplicity.”

Thank you!

Wil _*‘, Y
. & - . \ /
' =" A -

Paolo Insogna @p_insogna
(p > Platformatic
Node.js TSC, Principal Engineer paolo.insogna@platformatic.dev e

