[O > Platformatic
'

Download PDF

Node.js: More threads
than you think

Paolo Insogna
Node.js TSC, Principal Engineer

Thereisalot
In the unknown!

;

°“Berna oy |
SVIZZERA
‘Losanna ™/~ e LT L H_/’__%ih“'
| ' evra. . 4% v o 3
I I I : it : . SLOVENIA
e o a o o . 3‘ ! ks LD /'r A » Zagabria L\'“_\//”
’ \ NTrieste 2 .:
A oMilano . Verona . Venezia : :
= {.\; o Fiume CROAZIA
Torino \M . e
o W . l'-'.t-'||IL
{ l_\‘Vk/‘;\\/_\—i\ .pnla -
= N .Modena "Banja Luka
w‘\rﬂ Genova cealogna ‘Z‘\x Tuzla®
(; a £ Y AN BOSNIA-
: L Z . Rimini Zara® ERZEGOVINA
- Sarajevo
! Firenze ./ "/ 5
e . Pisa o &5 e :
ence Nizza Mar 7 : ;

“Livorno

Ligure i A 2 Split~ Mostar
Er/ = \ X
'A F
(y
L 7 /f o N\ MQ

r)'j EA melf& Fjl:'\] Ts & ¥ Dula\mw

\j;“mo .Foggia

Node.js Technical Steering Committee Member 2 Barl
. -, Napoli
Platformatic Principal Engineer e g e, salrnby K
p g >, \5 r\L - Taranto
sard 3 fﬂ,:, /_,
- & A
o Cagliari
b
_Palermo “Messing Mar
| fonic
Sicilia , Catania (Y J 2
paoloinsogna.dev ShogunPanda p_insogna pinsogna _oBizerte Agrigento
o Annabs e 5 Tunisi

Constanting

First of all, let’s give
credits!

This talk is co-authored by Platformatic CTO
and friend of mine, the only Matteo Collina.

Whatever dgoes wrong today, please
complain directly to him on Twitter!

@matteocollina

Let's start the right way! .

What is Node.js?

Node.js is an open-source, cross-platform runtime environment that allows developers to execute

JavaScript code on the server side, outside of a web browser. Traditionally, JavaScript was used

mainly for client-side scripting in web browsers, but Node.js extends its use to backend

development.

Here are some key features of Node.js:

1.

JavaScript on the Server: With Node.js, you can write server-side applications using
JavaScript, which means developers can use the same language for both frontend and
backend.

. Event-driven and Non-blocking I/O: Node.js is built on an event-driven, non-blocking I/O

model, making it lightweight and efficient. This allows Node.js to handle a large number of

concurrent connections with minimal overhead.

. Built on V8 Engine: Node.js uses Google's V8 JavaScript engine (the engine that powers

Google Chrome) to execute JavaScript code. This gives it a high level of performance and

efficiency.

. NPM (Node Package Manager): Node.js comes with NPM, a package manager that allows

developers to easily share, reuse, and manage JavaScript libraries and dependencies. NPM

has a vast ecosystem of open-source libraries and modules.

. Single-threaded but Scalable: While Node.js uses a single-threaded model, it is designed to

be highly scalable. It can handle many concurrent connections because of its event loop and
asynchronous architecture. v

@ r’ essage ChatGPT

Node.Js1s
(no longer)
single threaded ...

... and it hasn’t been for a while now!

2018: “Node.js has threads!”

I ANNA HENNINGSEN

Node.js: 1The Road to
Workers

https://www.youtube.com/watch?v=-ssCzHoUI7M

Worker Thread API

This is supported from Node.js 10.5.0 (June 2018).

<[>
%

Create workers viaworker_threads module
https://nodejs.org/dist/latest-v22.x/docs/api/worker_threads.htmi

Each thread has an independent event loop
This is crucial to off-load CPU intensive tasks out of the main thread.

(L

How do threads communicate?

v The API is fairly simple and straightforward.
u Each thread can communicate with others by sending messages over a MessagePort.

Additional channels can be created via the MessageChannel API.
It returns a pair of message ports, one meant to be sent to the other thread.

Do you see how far
we have gone?

How do threads communicate?

The graph below shows a summary of parent-children thread communication.

Parent (Main) Thread

p

4
wnrke.r.pr::stMeSSnge('Piﬁg')——% Pﬂrﬂﬂtp nrt.an('me&&&ge')}

7 7,
s A
cnng‘t Wﬂl"l(E.l" - New WDFICE.T'()

_ J

-
wnrker.nn('massnge') <
_ _ _
_ J

\ 7

&

parentPort.postMessage('pong'’)

~

74

(o

BroadcastChannel API

Less known, equally powerful.

} from 'node:worker_threads’

This can be used to implement a simple
Pub/Sub pattern.

const channel = new BroadcastChannel('main')

if () |
channel.onmessage = function () {
console.log(event.)

All channels are identified by a global ID }
and each thread can subscribe to events. for (let n = 8: n < 10: n++) {

new Worker(new URL(import.

}
} else {

channel.postMessage(' ready')

}

postMessageToThread

This Is only available in Node 22.5.0+.

The APl enables for direct thread to } from 'node:worker_threads'

thread communication without the need if) 4

of using MessageChannel. e (o) |
;lse if (=== 1) {

The recipient has to install a handler for EE;M?HEQETDThrEEd(B' {

process.on('workerMessage', (

the process.workerMessage event in

order to receive messages. })Cﬂnsnle-lﬂg(‘S{

b o-> 84

g :
ca 1cate:
How can threads commun‘ ‘
o .

P

Efficient inter-thread RPC

<[>

Q0

The node :events APl alow is not suitable for the job.
It is not designed to work between threads.

Let's add promises!
By leveraging the EventEmitter and the Promise API, we can easily build a RPC system.

All you need is an unique identifier and resolve method.
The ID is sent to the other thread so that can be used later in a shared event handler.

Example: multithreaded HTTP server

We all know this snippet is more worth than 1000 words.

const pending = {}
worker.on('message’,
[message.id](

})

let
const promise = new Promise(

| request. | =

})

worker .postMessage({id: request.
const hash = await

e
>
N
qv
L
e
qv
i =
e
—
g’
N
—_—

Structured Clone

The reality Is a bit harsher.

~~

<[>

Not all objects can be sent via a MessagePort.
A object cannot contain functions or some native Node.js object (as net.Socket).

The object will be cloned according to the Structured Clone Algorithm.
Check the documentation on MDN!

Transferable (1/2)

You can't always clone everything.

Some objects, usually the ones backed by a C++ representation,
can only be moved between threads.

These objects are called transferrable and thus must be
explicitly listed in the second argument of postMessage.

Transferable (2/2)

Some example of transferable objects are:

e MessagePort

e CryptoKey

e FileHandle

e WebStream (ReadableStreamand WritableStream)

The full list can be found in the MessagePort documentation.

Piscina

't is a powerful NPM module which provides
an easy to use API.

A Piscina instance dynamically adjusts the
number of workers to the maximum number
of parallelism available on the machine.

All the messaging and synchronization is
managed so you focus on the core logic.

https://www.npmjs.com/package/piscina

How to use Piscina

How easy can multithreading be?

import { } from 'piscina’

const piscina = new Piscina({
: new URL(
" ./worker.mjs', import.

export default ({
return a +

' }

const result = await piscina.run({
console. log()

“It's not who you are underneath,
it's what you do that defines you”

“Everything is
impossible until
somebody does it”

How can a Promise be invoked synchronously?

You can use Worker Threads to invoke an async function... synchronously!

import { as } from 'node:timers/promises’

async function echo () A

await sleep(1000)
return

}

(L

everysync (1/2)

A tiny utility to expose an asynchronous

APl via a worker thread...

4
-
Q
w
w
0
Q
©
e
c

-
et
(O
-l
@

=
o
-

} from

} from

import {
import {

synchronously!

'node :worker_threads'
'everysync'

} from

import {

} from

import {

{

new SharedArrayBuffer(1024,
'

. 64 * 1024 * 1024,

new Worker (join(

P A

assert.strictEqual(api.echo(42), 42)

worker.terminate()

const api = makeSync(

const buffer
const worker

Ofsyarcs

o ¢ &5 90 & @& O L L 1.
8 o8 980 @ L d o8 & 908 L 1
*000 000 @ o0 & & & 08 & 90

L 3 *9088 99 @ L 1. 20000
e 000088 & o880 588808 89
*® & @ e & 98090 000000 #0 &0
e o0 0080 & & 900 @& @ e @ @
e & @ & 0000 00 000 .
o800 & & 09 9% 999 & S L 1. 29 @
] e & 88 @ o088 & 20886 &8 @
e 9090800 & 80 ® L e 909808 99
*ee e & @ oe® 9 L L.

e 000 & 0 &0 08 00 e o8 @

e & 9008 &0
L L 9 000 900000 0008 & & 89 0
b S L L e & o0 900 @ o @
e 9 @90 & @

o008 008 L e @ e @ 29
* 00 & 80 & e & 89 & @ L
o0 9009 & & @ o0® L 1 e

(0] (a)

[/github.com/mcollina/everysync

-
]

https

(L

everysync (2/2)

This is all you need to expose an API from a thread.

import { } from 'everysync'
import { } from 'node:worker_threads’
import { } from 'node:timers/promises’

{

wire(workerData. ,
async echo()

await setTimeout(1000)
return

})

setInterval(() => {}, 100000)

L. —_——— L |

Atomics.waitAsync and SharedArrayBuffer

Atomics.waitAsync Is used to synchronize the main thread with the worker thread in meta.

Payload contains the message to be sent, and length its Is size.

SharedArrayBuffer (growable)

A

meta

length

payload

Use the same mechanism of postMessage

https://github.com/mcollina/everysync/blob/main/lib/objects.|s

import { } from 'node:v8’

function read(
const view = new DataView()
const length = view.getUint32(®, true)

const object = deserialize(new Uint8Array(
return

}

function write(, ,
const data = serialize()

if (buffer. < data.
if (!buffer.) {

throw new Error('Buffer is not growable')

+ 4 +

}

buffer.grow(data.
}

const view = new DataView(
view.setUint32(8, data.
new Uint8Array(

Calling a method to the worker thread

All happens thanks to the SharedArrayBuffer.

const OFFSET = 64
const TO_WORKER = 6
const TO_MAIN = 1

const data = new SharedArrayBuffer(10824, {
. 64 * 1824 * 1024,

})

const metaView = new Int32Array()

write(, { : 'echo’, . "42" }, OFFSET)
Atomics.store(, TO_MAIN, 1)
Atomics.notify(, TO_MAIN, 1)

const res = Atomics.wait(, TO_WORKER, 8,
Atomics.store(, TO_WORKER, 8)
if (=== '0k") {

const obj = read(, OFFSET)

console.log('result’,)

else {

throw new Error(The response timed out after S${

(L

Receiving the calls using Atomics.waitAsync

Don’t forget to also use Atomics.notify.

import { } from 'node:worker_threads'

import { as } from 'node:timers/promises’

const data = workerData.
const metaView = new Int32Array()

const obj = {

while (true) {
const waitAsync = Atomics.waitAsync(, TO_MAIN, 9)

const res = await waitAsync.
Atomics.store(, TO_MAIN, 9)

if (=== "'o0k') {
const { key, arqgs } = read(, OFFSET)
const result = await | 1(...)
write(, , OFFSET)
Atomics.store(, TO_WORKER, 1)
Atomics.notify(, TO_WORKER, 1)

(L

Why this is useful?

Pino uses this technique to support async
transports and flush the logs on exit.

https://getpino.io

Loader hooks

Node.js supports loading hooks via the node :module module, which allows to
customize the resolving and the loading of any file or module, including Node.js internals.

While the 1mport or require statements are still synchronous, all the
works under the hood happens in an asynchronous way thanks to the use of
an Internal separate worker thread, with a mechanism similar to everysync.

The multithreading architecture is the foundation of features
ike require(esm) or -experimental-strip-types.

(L

| ™ | | : g)
g‘. I='.|.:l'- __-ﬂ' | - o= x

Are we finally done? :

L. Iy i - :
e : - - g - v ks ,
eny AT NS, ‘ﬂ-‘.—' - . "
- -l" r-‘_ S - F A - & 3 : _ﬂ-.,'l
- . - b [] i Ll

'h. - --' am ¥ w
- . g e 4

Introducing Watt, the Node.js application server

Watt
The Node s App Server
] | A fastify
(UJ: h AI?I
E = : |
" nsde
7p 4 L ol I
52.% | - 1 @ - : FProcess
User o Node.js App . lr'|+ercr|:?
=
-
© d
I NEX T
Front-end

Watt

Watt (https://platformatic.dev/watt) abstracts away time-consuming tasks like monitoring,
logging and tracing all while supporting full stack applications.

It allows you to run multiple Node.Js services within the same process with inter-threading
communication over HT TP.

Each service runs in its worker thread so they cannot interfere with each other.

(L

How do you configure Watt?

An easy to understand configuration file is all you need. Create it with wattpm init.

: "https://schemas.platformatic.dev/wattpm/2.44.0.json",
L
. "127.0.0.1",
. 3000

o

How do you create a service?

Conventions over configuration. Ring a bell?

Create a folder named after the service in the web folder then create a package. json file with
some values like in the snippet below.

. true,
: "module”,
: "index.js",

A

Configure your service

Create a new watt.json in the service folder.

You can use wattpm import to get one very easily. It generates the following file.

shogun@panda :~/exampleS wattpm import
shogun@panda:~/example$ cat watt.json

{

"Sschema": "https://schemas.platformatic.dev/@platformatic/node/2.44.0.json"

}

How do you write a service?

1 Create a simple Node.js application
Export a build or create function which returns a supported HTTP application.

You canomit 1listen.
Watt will automatically invoke listen for entrypoint only. Other services are not exposed.

3 Use the mesh network via fetch.
Each service is internally reachable on the http://[SERVICE] .plt.local domain.

Network-less HTTP

The Platformatic mesh network. OQur secret sauce.

-

Platformatic Runtime

GET https://frontend.plt.local/page

V

GET ht‘tps: /exom FIE..-:::H /

frontend
(Next.js, entrypoint)

GET
L\ttpﬁ. .// niplna.[:dt.ln cal f intern r.a.l!/ api

POST
htt Fa:f/ bet a.Fft.lnnnU resource

alpha
(No ule..jﬂ)

GET
httpa://ﬁ:e‘tn.plt.lncnv

Example: a service which invokes another service

Like earlier, we all know this snippet is more worth than 1000 words.

import from 'fastify'

export function create() {
const app = fastify({})

app.get('/fast', async () => {
return { : Date.now() }

})

app.get('/slow’', async () => {
const response = await fetch('http://worker.plt.local/hash')
return response. json()

})

return

) (0

9 International
o.&)

b Kids
INTERNATIONAL KIDS CODING BOOTCAMP Boot camp

GoFundMe campaign

We are running a GoFundMe campaign to support the Code Their Future initiative.

llll
e @

.y L
] L 11 [1
SRS SN0 RS B W
LLLL L. B & sae
L L} L ¥ L L L
. SReRE_ S8 B9 L]
¥ 8 F B B0 *8 8 B _BEEN
& B8R S8 @ & 8 @ L
" "EEN L L BN L 3
as @ ® a8 B B W
L] L IR N L 1
. *F F_ 85 ¥ 89
® 88 B0 BEEEF & @9
- e . e
e &8 L 1 1]
L LN L -
] L " e
L 1] L 1) L L1 N]
L L L O L | e L
..... L I seFREwe B ¥
- " L] L L
» LI » L L
lllll . _ase
IIIIIIIIIIIII L L1 L L L J B
------] . " 80 208 W
¥R & 0 @ L 111
. B 8 SN
FEREER % 8 @ L 1}
seeEs SEeEs @
aE B & @ L L2
L B | L] L]
L1 L e L1
L Ll Ll B L L 1 L0l L)
L Ll . . 8 B9
s8N @ .
L L L L]
8 F @8g F& & B ¥R ¥ B @
] L " e
e 89 " 8 Ow
L] .E & S8 @
. @ Ll *E B8
] L " § e

https://www.gofundme.com/f/code-their-future-unlocking-opportunities-for-underserved-k

(L

One last thing™

“Keep your face always toward the sunshine
and shadows will fall behind you.”

Thank you!

Wil _*‘, Y
. & - . \ /
' =" A -

Paolo Insogna @p_insogna
(p > Platformatic
Node.js TSC, Principal Engineer paolo.insogna@platformatic.dev e

