(8] 25k (w)

Download PDF

Don’t break GraphQL, extend it!

Paolo Insogna
Node.js TSC, Principal Engineer @ Platformatic



Being kind

never hurts!

& ® ® & = ® & ® F #® ® #F F &# F F F F EF F F F F ®F & F F & § F F € ®F & &

@ B B B & ®F & & & & & & F & & F ¥ & F & & F F F & ¥ F & F & & & & &

]

@ @ @ & & & & H & & & ® & HE F & HF F B E & & & ¥ & & F & & & F & &8 &8 &

- = B @ W

- & % ® ® @

¥ & ® % #® ® & # & & ¥ & & F & & @

L

@ & ® & & & & B ® ® & & & E B & F B F & ® & F & 5 F & & 8 & F F B 4

& ¥ & B & & ® & & B & & F & @0 B F 8 F & & F 8 F & @ B F & B F & B ¥ 8 &

® & ® # & & ®E & & B F & F & & 8 & & & B &

@ & & & & B O & & B 4 & F A B E & & & &K & & HE ¥ & = & & @&

® & ®§ ® ® @ & ¥ & & & # F F F F & & F & & ®F F & & & ® & # F W

# ® & B ® ® ® ® ® ® & ® & & @ ® # & & # @ F & 85 B =

® & & @& & & & ® & & & & & B & & & B & & 8 B W

® B B & & B 8 & ® ®F 8 &

® & @ ® & ® ® ® 8 ® & &8 ® @ & 8 &

i
@ % & ® 8 B & 8 8 & &8 85 & & 3 =" »B S »

E ® ¥ &8 F ¥ ® & 8 & &

. & @
L .
L
L
& & @
E @ @
B & @
LI
® & @
L
- W W
® & @
1 L
L
& @
1 L
! L
L
- -
L L]
L] |
-
- -
- = .
" & w
L
L ]
- % @
& & @
L
- & W
" @ @
- & W
- & @
L N
" W W
——

L N

Iilll.'--n..

= % ® & % ¥ ® ® #F ®F W W

® @ & & & & & ® & =

" F & ® & ® &

& & ® & & & & & & & & & F F F 8 @ F 5 & 8 B OF 8 & @

—

" 8 ¥ FE & ® E & & # & ® & & & & & @

—

& ® ® & & & & & # & & & ¥ &

o & B & " B &
L
E 8 & & § & & & 8 ® B @

?f".ll‘.ﬁ..-l
& ®F ® & ® & & §F B & & B F & & B F B @

" B & B OB & & ® = & & = &

.

® & @ & @ @ & ® ® ®W @& ®F & 8 & B F 8 ¥ ¥

o u gl
& 5 @

& & & ® ® & ¥ ® W ® B 8 & = 8 ® 8 ® @ —_—

® ® B ® ® ® & @

@ & & & & ¥ ® 8 # # @

® & ® ®w ® ®

& @ B @ & & ® ® & ® 8 & @ W o8 W W W W

tllllllvlll-llilnill-.‘t_l_-

Ll
" 2 B 8B & B B & & = B @
" & ® &8 ® & ® ® & ® ¥ ® ®

® 8 8B B @

7.0

L

- W & W

i 8 & ® & & & &

_’..:.ZZE.':ZHZZ:::

& & =

@ B OB & & @ ,lll

L

® ® &% & 8 ®F & @ B W

- W O O & & ® & & ® ® & & §F W & &

‘ 4
)

& & B O & & ¥ & & ® & &

-

o8 & B OF @& M R & W R E @ @
B B & @ ® & & & ® & W ¥

L

F

L

Ta

(

T ®E B & § & & & ®F & § B B B &

® B B & & B & ® o8 OB o8 8 B @

& & ® & & & ¥ ® & @

¥ " F F F & & & &8 & BB B B

& & & & ® & & & ® &

" w om om @

O & & & O & ® ® § ® ® & & ® W

- & W O & & B @ W

® & B B & & & & & 8 & B B & 5 B F & & § & 8 & ¥ 8 8 B B 8 B W

"= & ® B B ®B B B N F & & & & & & & & & B 8 B W 8 8 B B W




°“Berna oy |
SVIZZERA
‘Losanna ™/~ e LT L H_/’__%ih“'
| ' evra. . 4% v o 3
I I I : it : .  SLOVENIA
e o a o o . 3‘ ! ks LD /'r A » Zagabria L\'“_\//”
’ \ NTrieste 2 .:
A oMilano . Verona . Venezia : :
= {.\; o Fiume CROAZIA
Torino \M . e
o W . l'-'.t-'||IL
{ l\_\‘Vk/‘;\\/_\—i\ .pnla -
= N .Modena "Banja Luka
w‘\rﬂ Genova cealogna ‘Z‘\x Tuzla®
(; a £ Y AN BOSNIA-
: L Z . Rimini Zara® ERZEGOVINA
- Sarajevo
! Firenze ./ "/ 5
e . Pisa o &5 e :
ence Nizza Mar 7 : ;

“Livorno

Ligure i A 2 Split~ Mostar
Er/ v \ i1
"*ﬁ F
( y
L > I =i \ MC

;Jlj !.,IA l'ﬁ',& Fj:'\] ﬁ*’"ﬂ ¥ Dula\mw

\jfﬁxo .Foggia

Node.js Technical Steering Committee Member 2 Barl
. -, Napoli
Platformatic Principal Engineer gl . gy »\ﬁ\
"h.r; \5 . Taranto
Sard : ‘nﬂ‘j /—-..
o o O
o Cagliari
%
_Palermo “Messing Mar
lonic
Sicilia ; Catania
paoloinsogna.dev  ShogunPanda p_insogna pinsogna o ke Q2 RIste
o Annabs e 5 Tunisi

Constanting



Let’s celebrate GraphQL!

We all know how this technology has made our life easier.




Why is it good?

< / ) Many resources, less overhead, expressive language
You can ask for multiple resources in a single request and save network bandwidth.

No overfetching or underfetching
Q. The server will return exactly the data we asked for. This will return.

Federation
Multiple schemas can be easily joined.



Federation

qq

0 Integration with remote services
0 Each subgraph Is handled by a separate service, possibly remote.

Split the schema in subgraphs
This is great for separation of concerns.

" Only works with GraphQL service

You can’t directly integrate with REST APIs or similar.



Serialization

[\
11

A\ /4

GraphQL does not enforces a serialization format
Developers are free to use whatever they want to.

Neither the data format or the transfer protocol are mandated by the spec.

% The network stack is your choice

Let’s face the honest truth
99% (total arbitrary) of the times we are talking about JSON data exchanged over HTTP.



The server knows
it better

lt's relative easy to attach new data sources
to the server.

How to push additional data to a client
that didn’t ask for it?




& -
. h‘ .. L

How to be &
proactive?

4
4
1
L3
u

Y47
*n.
B
."n

q;.'.-

Fl - " g .
3 i y - i o T
- - | s -
|l i i £ ; il Pl oy =
- .
| a ] R
e & 7 - . g i-

By B A o
..I_.'-.-_'I_l rllﬁfu ..#l“'

!,.'_.-.rw'-""n".:" o




Happy case: we control everything

1 Add new data to the server’s schema
You should not break backward compatibility.

Verify the clients are still working
Double checking that nothing broke is never a bad choice.

2

3 Update the clients

Update queries in the client to use the new data.



Are we done?




You already know
the answer...



The happy case is mostly theoretical

[\
11

A\ /4

You have to be in control of the clients
You also have to consider users that don’t usually upgrade their applications often.

Nothing can go out of sight
If even a single component is not updated at the right time, compatibility problems will arise.

' Specification will be broken

Even if the client is able to handle data it didn’t ask for, we are breaking the specification.






Do we have a
choice?




Yes, let's make
an enriching

proxy’!

'_.".‘ 5
B et A - T T,
e T sl ! = g S —e,
Al s St LA

— —

T n - o g g
e S e T



Check it out!

We can reuse parsing and serialization from the reference GraphQL Javascript implementation.

llllllllll
IIIIIIIIII
.................

IIIIIIIIIII

https://github.com/ShogunPanda/graphql-enrich-proxy



How it works

2
3
4
S5

Analyze the query
Parse and validate the query received by the client. In case of request error, stop here.

Ensure types information with temporary modifications
Each selection set must contain the type to give all information to the enriching handler.

Execute the query
This can be done directly on the server or we can create an enriching GraphQL proxy server.

Fetch the additional data
Using a tree traversal algorithm, fetch additional data for each field according to the handler.

Enrich the response
Store the additional data in the extensions field, using the JSONPath selector as the key.



Meet GraphQL extensions

The extensions field is already documented in the specification and it's perfect to ensure both
compatibility and expandability.

<[>

Extensions are for developers Existing clients will ighore them

The specification states that the field is Unaware clients will ignore the field and the
reserved for developers. server is still specification compliant.




Overview

} from 'graphql/language/index.js’




Leveraging types

We make sure __typename is in all selection
sets so we can easily parse the response.

Never return these to the client.

% The added fields are temporary —-enriched:

aliasedType:

Leverage field aliasing
Use it to easily spot the fields added.




Ensuring type
information

The visit APl and the AST from the GraphQL
reference implementation makes our life

very easy.

const injectedFieldId = “enrichType_S{Date.now()}"

SelectionSet( ) {

if (f.name. === '__typename' && !f.

node.selections.unshift(




Cache the queries

Parsing and executing GraphQL Is expensive. Cache them when possible.

Cache the original query... ...and the enriched query

This also includes invalid queries as it will Traversing a complex query to ensure types
speed up the handling of misbehaving clients. information can be time consuming.



Let me introduce two friends...




Depth first tree traversal




JSONPath

It is a string syntax for selecting

and extracting values within a
JSON value.

Well known
You are already using

JSONPath or a similar syntax.

(' Easily implementable
0 The syntax is easy to

understand and implement.

shogun@panda :~/example

{

"countries": |

{ "name": "Iceland”

cat example.json

, capital: "Reykjavik", },

{ "name": "Italy", capital: "Roma" }

]
}

shogun@panda:~/example
IIRDmaH

jg ".countries[1].capital” example.json




...and now the show goes on!



Enrich the data

await traverse( , async function (

We traverse the upstream response,
executing the handler on each node.

If data is returned from the handler, we

append to the extension using
JSONPath.

= undefined




Tree traversal

Implementing a depth first tree
traversal Is quite easy when using
recursion.

await visitor(

for (const [key, val] of Object.entries(

await traverse( 1], path.concat(

await traverse( , path.concat( ),




Fetch additional
data

const response = await undici.request(

Using the type and/or the path we
can choose whether the node needs

additional data.

const body = JSON.parse(await getStream(response. ))

return response. === 200




Only an example
can enlighten us!




Input query

aliasedType:




Query executed from the upstream

enrichType_1677506561773:

enrichType_1677506561773:




Upstream response

[t contains the enriched type information

that will
response.

be

removed from

the final

. Query ",

. Country,

: CityEdge’,

: City ",

: CityEdge’,

: City ",




Proxy response (1/2)

P o
: "Country”,

The client will receive the original data - “United States”,

: "US",
requested ... : |

: "CityConnection”,

o
: "Abbeville”

: {

: "Adamsville”




Proxy response (2/2)

...and all our enriched data Is In the
extensions field.




Mission completed!




Take home lessons

What can we learn from this long journey?

Read the specification
The specifications are formal and

verbose but they might already
contain what you need.

Be compliant
Even if peers are lenient with
specification break, they might
stop at any time. Don’t risk!

Analyse the environment

Even if you develop the experience
end to end, you will never be able

to cannot control everything.



One last thing™

“You are remembered for
the rules you break.”




Thank you!

Wil _*‘, Y
. & - . \ /
' =" A -

Paolo Insogna @p_insogna
( p > Platformatic
Node.js TSC, Principal Engineer  paolo.insogna@platformatic.dev e




